10 research outputs found

    Quantization, Calibration and Planning for Euclidean Motions in Robotic Systems

    Get PDF
    The properties of Euclidean motions are fundamental in all areas of robotics research. Throughout the past several decades, investigations on some low-level tasks like parameterizing specific movements and generating effective motion plans have fostered high-level operations in an autonomous robotic system. In typical applications, before executing robot motions, a proper quantization of basic motion primitives could simplify online computations; a precise calibration of sensor readings could elevate the accuracy of the system controls. Of particular importance in the whole autonomous robotic task, a safe and efficient motion planning framework would make the whole system operate in a well-organized and effective way. All these modules encourage huge amounts of efforts in solving various fundamental problems, such as the uniformity of quantization in non-Euclidean manifolds, the calibration errors on unknown rigid transformations due to the lack of data correspondence and noise, the narrow passage and the curse of dimensionality bottlenecks in developing motion planning algorithms, etc. Therefore, the goal of this dissertation is to tackle these challenges in the topics of quantization, calibration and planning for Euclidean motions

    Robust and Accurate Superquadric Recovery: a Probabilistic Approach

    Full text link
    Interpreting objects with basic geometric primitives has long been studied in computer vision. Among geometric primitives, superquadrics are well known for their ability to represent a wide range of shapes with few parameters. However, as the first and foremost step, recovering superquadrics accurately and robustly from 3D data still remains challenging. The existing methods are subject to local optima and sensitive to noise and outliers in real-world scenarios, resulting in frequent failure in capturing geometric shapes. In this paper, we propose the first probabilistic method to recover superquadrics from point clouds. Our method builds a Gaussian-uniform mixture model (GUM) on the parametric surface of a superquadric, which explicitly models the generation of outliers and noise. The superquadric recovery is formulated as a Maximum Likelihood Estimation (MLE) problem. We propose an algorithm, Expectation, Maximization, and Switching (EMS), to solve this problem, where: (1) outliers are predicted from the posterior perspective; (2) the superquadric parameter is optimized by the trust-region reflective algorithm; and (3) local optima are avoided by globally searching and switching among parameters encoding similar superquadrics. We show that our method can be extended to the multi-superquadrics recovery for complex objects. The proposed method outperforms the state-of-the-art in terms of accuracy, efficiency, and robustness on both synthetic and real-world datasets. The code is at http://github.com/bmlklwx/EMS-superquadric_fitting.git.Comment: Accepted to CVPR202

    Efficient Path Planning in Narrow Passages via Closed-Form Minkowski Operations

    Full text link
    Path planning has long been one of the major research areas in robotics, with PRM and RRT being two of the most effective classes of path planners. Though generally very efficient, these sampling-based planners can become computationally expensive in the important case of "narrow passages". This paper develops a path planning paradigm specifically formulated for narrow passage problems. The core is based on planning for rigid-body robots encapsulated by unions of ellipsoids. The environmental features are enclosed geometrically using convex differentiable surfaces (e.g., superquadrics). The main benefit of doing this is that configuration-space obstacles can be parameterized explicitly in closed form, thereby allowing prior knowledge to be used to avoid sampling infeasible configurations. Then, by characterizing a tight volume bound for multiple ellipsoids, robot transitions involving rotations are guaranteed to be collision-free without traditional collision detection. Furthermore, combining the stochastic sampling strategy, the proposed planning framework can be extended to solving higher dimensional problems in which the robot has a moving base and articulated appendages. Benchmark results show that, remarkably, the proposed framework outperforms the popular sampling-based planners in terms of computational time and success rate in finding a path through narrow corridors and in higher dimensional configuration spaces

    Pose changes from a different point of view

    No full text
    For more than a century, rigid-body displacements have been viewed as affine transformations described as homogeneous transformation matrices wherein the linear part is a rotation matrix. In group-theoretic terms, this classical description makes rigid-body motions a semidirect product. The distinction between a rigid-body displacement of Euclidean space and a change in pose from one reference frame to another is usually not articulated well in the literature. Here, we show that, remarkably, when changes in pose are viewed from a space-fixed reference frame, the space of pose changes can be endowed with a direct product group structure, which is different from the semidirect product structure of the space of motions. We then show how this new perspective can be applied more naturally to problems such as monitoring the state of aerial vehicles from the ground, or the cameras in a humanoid robot observing pose changes of its hands.Division of Information and Intelligent Systems, National Science Foundation (Grant No. IIS-1619050), Office of Naval Research Global (Grant No. N00014-17-1-2142)
    corecore